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ABSTRACT 
 

Electromagnetic radiation (EMR) is a recognized approach for investigating the behavior of the 
nervous system. This research explores a Hopfield Neural Network (HNN) with two neurons, 
examining the interplay between synapses and hyperbolic memristors, along with the effects of 
EMR. By modifying the interference among the networks and adjusting synaptic weights, we can 
control neuronal capabilities. The study simulates synaptic interference between the two neurons, 
incorporating parameters of weight and memory, and analyzes how EMR influences chaotic 
dynamics, complex behavior, transient disturbances, phase portraits, chaotic phenomena, and 
branching diagrams within these neural networks. This paper investigates how electromagnetic 
radiation (EMR) influences chaotic dynamics in a two-neuron-based memristive Hopfield neural 
network (HNN) with synaptic crosstalk. The dynamic behavior of the HNN can be regulated by 
altering the EMR input to the affected neuron. The proposed model has been simulated using 
PSpice. The findings demonstrate that external stimuli, represented by EMR, can both enhance 
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complex dynamic behaviors and suppress chaotic patterns by adjusting parameters. Finally, circuit 
experiments using PSpice confirm the feasibility of the theoretical model, contributing to the control 
of chaotic phenomena. 

 

 
Keywords: Chaotic Dynamics; memristive hopfield; neural network; electromagnetic radiation. 
 

1. INTRODUCTION 
 

Processing in the brain, the transfer of 
information from one neuron to another is done 
by the intermediate synapse (Kawahara et al., 
2017). Neurons in the nervous system 
communicate with each other through 
electrochemical signals (Sporns et al., 2000, 
Sporns 2022, Segarra et al. 2021). External 
stimulation and uncertainty of information 
transmission cause nonlinear and complex 
dynamic behavior in the neural network of the 
brain (Ursino et al., 2014). Neural networks and 
artificial neurons are inspired by the structure 

and function of the brain system (Tozzi and 
Mariniello, 2022). In the process of researching 
the neural network, researchers investigated the 
dynamic behavior of the nervous system of the 
brain and chaos mechanisms with different 
methods (Yao et al., 2020, Nicola et al. 2018, 
Nicola et al. 2018, Kong et al. 2021, Yao et al., 
2023, Yao et al, 2023, Lai and Yang , 2023, Mo  
and Bao 2022, Yao et al., 2020, Hu et al., 2017). 
In the memristor, by adjusting the voltage, it is 
possible to simulate the flexibility of the            
synapse weights, and by changing the voltage 
value, the strength of the nerve connection can 
be shown. 
 
Memory neural networks have attracted the 
attention of many researchers (Dong et al., 2018, 
Ma et al., 2018, Chen et al., 2020). It has been 
used to improve the quality of images and solve 
the problem of the order of designed images (Ma 
et al., 2018). Human emotions are simulated 
through a memristor-based Hopfield neural 
network (Chenet al., 2020). By changing the 
weight of neural synapses, the features of 
chaotic attractors, Lyapunov power, complex 
bifurcation diagrams, fuzzy portraits reflect the 
dynamic behavior of parameters, after nonlinear 
dynamics are used to investigate the behavior of 
HNN (Chen et al., 2023). In the article (Hopfield, 
1982), instead of the hyperbolic function, a new 
function called RELU is used as an activation 
function and a three-neuron has been 
investigated. Hopfield introduced Hopfield's 
artificial neural network (Dehghani and 
Trojovský, 2021), which can simulate complex 
brain dynamics such as chaos. HNN is widely 

used in image processing, associative memory, 
combinatorial optimization of images, etc. 
(Kasihmuddin et al., 2019, Citko and Sienko, 
2022, Bazuhair et al. 2021, Rubio et al., 2021 
and Guo et al. 2024). One of the branches of 
physics, the field of dynamics, has been 
transformed into three areas. By using computer 
technology, researchers have been able to easily 
research nonlinear systems, so research on the 
dynamics of neural networks has increased. By 
using mathematical modeling and data analysis, 
its application has been developed in the 
development of neuroscience theories and the 
design of artificial intelligence systems and brain 
function (Ji et al. 2023, Yan et al. 2022, Guo et 
al., 2023 and Parastesh et al. 2022). In recent 
years, researchers have investigated the 
importance of higher order interactions in the 
dynamics of neural networks in collective 
dynamics (Majhi et al.,2022). In the article (Cui et 
al. 2021), various types of dynamic processes, 
diffusion processes, synchronization 
phenomena, consensus formation, and 
intellectual evolution have been investigated. The 
concept of attractors is a main element in 
understanding the nonlinearity of the network to 
research the nonlinear dynamics of HNN. The 
attractor can be simple or very complex, and the 
complexity creates chaos theory. There are two 
categories of attractors in investigating chaotic 
systems: trivial attractors. and strange attractions 
(Grassberger and Procaccia, 1983, Grassberger, 
1983, Hentschel and Procaccia, 1983, Cui et al., 
2020, Thompson and Stewart, 2002). 
Insignificant gravity has a simple form in a 
chaotic system, which is a point, a straight line, 
or a simple periodic circuit (Boccaletti, 2000). 
The dynamic behavior of insignificant attractors 
is predictable and simple, but it plays an 
important role in chaotic systems. Strange or 
individual attractors have non-periodic dynamic 
behaviors and very complex structures (Lin et al., 
2020). To encode the image, a multivariate 
weighted chaotic system such as Lorenz, 
Multivariate Weighted Chaotic Systems (MWCS) 
based on non-polynomial functions was used (Qi 
et al., 2022). Non-linear properties in HNN are 
due to the synapse weights, the changes in the 
synapse weights are similar to the synapse 
changes in the brain system (Wu et al., 2011, 
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Njitacke  etal., 2020 and Yao et al., 2023). 
Adding some external stimuli to the neuron leads 
to an unexpected change in the neuron, so the 
external stimuli directly affect the behavior of the 
neuron and the state of the entire neural network 
(Xie et al., 2023, Ge et al., 2023 Ma et al., 2015 
and Wan et al. 2022). Hindmarsh-Rose neuron 
model, which is a combination of magnetic flux 
and memristive current as external stimulus in 
2016 LV et al. f introduced later research about 
Electro Magnetic Radiation (EMR) is an external 
stimulus that activates neural output through the 
interaction of electricity and magnetism. And the 
research on EMR external stimuli on the neural 
network for nonlinear network dynamics started. 
The HNN based on three neurons was 
developed by Wan et al. who introduced 
electromagnetic induction or bias current to two 
neurons under the influence of an EMR and 
found that either the power change Coupled 
memristor neural network system shows complex 
dynamic behaviors (Wan et al., 2022 and Lin et 
al. 2020). Valin and his colleagues constructed a 
neural network of three neurons under EMR and 
discovered that a neural network with periodic 
attractors or applying EMR on a neuron produces 
irregular attractors, and the neural network 
creates multi-exeral attractors (Lin and Wang 
2020 and Xu et al. 2022). It is important to study 
about the nonlinear dynamic behavior of neural 
networks of the brain and external stimuli on 
them (Qiu et al. 2022, Yao 2023, Yao et al., 
2023, Johnson and Rad, 2024). 
 
The chaotic behavior of neural networks has 
been a subject of extensive research, 
emphasizing the significance of non-linear 
dynamics in modeling cognitive processes (Smith 
et al., 2024). Researchers have established that 
chaos can enhance the computational 
capabilities of neural networks by allowing them 
to explore multiple states and trajectories, thus 
improving their adaptability and learning 
efficiency (Wang & Liu, 2024). Specifically, in 
Hopfield networks, which are recurrent neural 
networks with associative memory properties, 
chaotic dynamics enable complex pattern 
recognition and stability in memory retrieval 
(Johnson & Rad, 2024). 
 
Memristors, as fundamental circuit elements, 
have been introduced as a means to emulate 
synaptic behavior within neural networks. They 
provide a mechanism for memory storage and 
are characterized by a nonlinear relationship 
between voltage and current, which is vital for 
mimicking synaptic plasticity (Zhang et al., 2024). 

Recent studies have shown that integrating 
memristive elements into neural network 
architectures can lead to enhanced learning 
capabilities and robustness against noise, 
making them ideal candidates for implementing 
Hopfield networks (Lee & Chen, 2024). 
 
Electromagnetic radiation has been shown to 
significantly impact neurological behavior and 
dynamics in various biological systems 
(Thompson et al., 2024). Studies indicate that 
EMR can modulate synaptic transmission and 
neuronal firing patterns, which in turn can 
influence the overall activity and stability of 
neural circuits (Fernandez & Patel, 2024). The 
incorporation of EMR into memristive HNN 
models provides a unique opportunity to study 
how external electromagnetic stimuli can control 
or induce chaotic behavior, presenting potential 
methodologies for therapeutic interventions in 
neurodegenerative conditions (Singh et al., 
2024). 
 
Recent literature highlights the significant 
interplay between chaotic dynamics, memristive 
components, and EMR in neural networks. 
Research by Kline et al. (2024) demonstrates 
that varying EMR parameters can modify the 
chaotic regimes of memristive neurons, allowing 
for the tuning of dynamic behaviors—an 
essential consideration in designing adaptive 
neural systems. Furthermore, the dual 
application of EMR has been shown to exhibit a 
suppression effect on chaotic behavior, offering 
insight into optimal control strategies for chaotic 
systems leveraging external electromagnetic 
stimuli (Patel & Kumar, 2024). 
 
The understanding developed through these 
studies has far-reaching implications, particularly 
in the realms of artificial intelligence, adaptive 
learning systems, and bio-inspired computing. As 
the field evolves, future research may focus on 
integrating more complex multi-neuron networks 
and exploring real-time applications of EMR in 
controlling chaos for improved computational 
tasks (Rodriguez et al., 2024). 
 
In conclusion, the integration of chaotic dynamics 
in two-neuron memristive Hopfield neural 
networks under electromagnetic radiation 
presents a frontier for innovating both theoretical 
insights and practical applications. Continued 
investigation in this area will not only enhance 
our understanding of neural processes but also 
pave the way for advancements in next-
generation computational paradigms. 
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In this article in the second part Hyperbolic 
memristor synapse HNN, In the third part 
Analyzing the dynamic behavior of HNN, In the 
fourth section Circuit simulation with pspice And 
In the fifth section, we will also talk about 
CONCLUSION. 
 

1.1 Significance of the Study 
 
The study of chaotic dynamics in a two-neuron 
memristive Hopfield Neural Network (HNN) 
under the influence of electromagnetic radiation 
(EMR) holds significant implications for multiple 
fields, including neuroscience, artificial 
intelligence, and complex systems analysis. 
 

1. Advancement in Neuroscience: By 
examining how EMR affects neuronal 
behavior and chaos, this research 
enhances our understanding of the 
underlying principles of synaptic 
interactions and neuronal dynamics. This 
insight could contribute to better models of 
neurological processes and disorders, 
opening pathways for novel therapeutic 
strategies. 

2. Enhancement of Neural Networks: The 
findings from this study can inform the 
design and optimization of artificial neural 
networks. Understanding how external 
factors like EMR can modulate chaotic 
behavior may lead to the development of 
more robust and adaptable AI systems 
capable of handling complex tasks and 
dynamic environments. 

3. Exploration of Complex Systems: This 
research contributes to the broader field of 
complex systems by demonstrating how 
external stimuli can induce or suppress 
chaotic dynamics in interconnected 
systems. It offers a framework for 
analyzing other biological or physical 
systems where similar interactions occur, 

potentially leading to innovations in fields 
such as bioengineering and physics. 

4. Applications in Control Theory: The 
ability to control chaotic behavior through 
EMR can have practical applications in 
various technological fields, including 
telecommunications, secure 
communications, and chaos-based 
cryptography. Understanding the 
modulation of chaotic dynamics can 
enhance system stability and reliability in 
critical applications. 

5. Foundation for Future Research: This 
study serves as a foundational exploration 
into the intersection of neuromorphic 
engineering and electromagnetic 
influences, paving the way for future 
studies to investigate more complex neural 
architectures and their responses to 
various external stimuli, thereby expanding 
our knowledge of both artificial and 
biological networks. 

 

2. HYPERBOLIC MEMRISTOR SYNAPSE 
HNN 

 

2.1 HNN Synapse Memristor 
 
The simulation of the memristor with the 
activation function of the inverse hyperbolic 
tangent model to simulate the synapse weight of 
the neurons is based on the following formula: 
 

 𝑖 = 𝑤(𝑥)𝑣 = [𝑎 − 𝑏 𝑡𝑎𝑛ℎ(𝑥)]𝑣                        (1) 
 
Where I, v, x respectively represent the current, 
voltage and state variables of the memristor 
defined as follows: 
 

𝑖 =  𝑤(𝑥)𝑣 = ( 
−1

𝑅𝑎
−  

1

𝑅𝑏
tanh (𝑥)) 𝑣            (2) 

 
 

 
 

Fig. 1. a: two neurons with overlapping synapses, b: single EMR, c: double EMR 
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According to Fig. 1, the synapse interference 
between two neurons can be expressed as 
follows: 
 

𝑤1 = 𝑎1 − 𝑏1 tanh(𝑥1) + 𝑐1 tanh(𝑥4) 

𝑤2 = 𝑎2 − 𝑏2 tanh(𝑥4) + 𝑐2 tanh(𝑥3)                     (3) 
 

in which: 
 

𝑎1 =
𝑅

𝑅𝑎1

, 𝑏1 =
𝑅

𝑅𝑏1

, 𝑐1 =
𝑔𝑅2

𝑅𝑏1 𝑅𝑐1 
, 𝑎2 =

𝑅

𝑅𝑎2

, 𝑏2

=
𝑅

𝑅𝑏2

, 𝑐2 =
𝑔𝑅2

𝑅𝑏2 𝑅𝑐2 
                    (4) 

 

a1, b1, a2, b2 Memristor parameters and c1, c2 
are interference power parameters. 
 

2.2 HNN Model Based on Two Neurons 
 
The formula of an HNN for two neurons is as 
follows: 
 

𝑐1

𝑑𝑥𝑖

𝑑𝑡
= −

𝑥𝑖

𝑅𝑖

∑ 𝑤𝑖𝑗 tanh(𝑥𝑖) + 𝐼𝑖 

𝑛

𝑖=1

                  (5) 

 

where ci, Ri, xi represents, membrane capacity, 
membrane resistance and voltage. and tanh(xi) 
is the activation function of the neuron, and W is 
the synapse weight between neurons i,j, and Ii is 
the bias current. In this research, the memristor 
model based on EMR simulation has been used 
as an external stimulus for two neurons with 
intermediate synapses, and the mathematical 

model features of the memristor model are as 
follows: 
 

𝑖 = 𝑤(𝜑)𝑣 
𝑑𝜑

𝑑𝑡
= 𝑔(𝜑, 𝑣) 

𝑤(𝜑) = 𝑝(𝛼 + 𝛽𝜑2) 
𝑔(𝜑, 𝑣) = 𝜇𝑣 + 𝜀𝜑                                                 (6) 

 

i is current, v is voltage, 𝜑 is magnetic flux and 

W(𝜑 ) is memory conductivity. 𝛼, 𝛽, 𝜑, 𝜀  are the 
adjustable parameters of the EMR model In this 
article, the HNN model with two neurons and 
synapse weight values are set to appropriate 
weights, which are first checked without the 
intervention of EMR. In the following equation, a 
sinusoidal excitation is used for the memristor 
model:  
 

𝑣 = 𝐴 sin(𝑓 ∗ 𝑡) 

𝐼 = 𝑝(𝛼 + 3𝛽𝜑2)𝑣 
𝑑𝜑

𝑑𝑡
= 𝜇𝑣                                                                   (7) 

 

where A, F are the amplitude and frequency of 
the sinusoidal stimulus, respectively, when the 
parameters 𝛼 = 𝛽 = 𝜇 = 1 , 𝜑 = 2  and A=1 are 
fixed and F is set to the values of 1, 3,9 and 12 
respectively, in Fig. 2 it can be seen that the 
equation (7) Based on these values, it has three 
outputs of this type of memristor, each frequency 
forms a hysteresis loop and passes through the 
origin, and becomes linear as the output 
frequency increases. 

 

 
 

Fig. 2. Memristor model with fixed values of A=1,F=1;F=3;F=6;F=9;F=12, output of hysteresis 
loops 
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Using equation 5.6, HNN model with overlapping synapse and EMR bone according to Fig. 1, part a is 
as follows: 

 
𝑥1̇ = −𝑥1 − 1.5 tanh(𝑥1) + tanh(𝑥2) − 1.5 tanh(𝑥3) − 1.5 tanh(𝑥4) 

𝑥2̇ = −𝑥2 − 2.2 tanh(𝑥1) − .5 tanh(𝑥2) + tanh(𝑥2) + 2.5 tanh(𝑥3) −  1.5 tanh (𝑥4) 

𝑥3̇ = −𝑥3 − .5 tanh(𝑥1) 

𝑥4̇ = −𝑥4 − tanh(𝑥2)                                                                                                                                             (8) 

 
𝑥𝑖(i=1,2) and 𝜑 is the state variable of the system. 

 
In the second case, using a single EMR according to Fig. 1, part b: 

 
𝑥1̇ = −𝑥1 − 1.5 tanh(𝑥1) + tanh(𝑥2) − 1.5 tanh(𝑥3) − 1.5 tanh(𝑥4)  

+𝜑(𝛼 + 3𝛽𝜑2)𝑥1 

 𝑥2̇ = −𝑥2 − 2.2 tanh(𝑥1) − .5 tanh(𝑥2) + tanh(𝑥2) + 2.5 tanh(𝑥3) −  1.5 tanh (𝑥4) 

 𝑥3̇ = −𝑥3 − .5 tanh(𝑥1) + 1.4 tanh(𝑥2) + tanh(𝑥3) +  1.5 tanh(𝑥4)  

 𝑥4̇ = − 𝑥4 + 5 tanh(𝑥1) − 1.5 tanh(𝑥2) − 2.5 tanh(𝑥3) +  3 tanh(𝑥4)  

 𝜑 = 𝜇 𝑥1                                                                                                                                                                    (9) 

 
In the third case, using two EMRs according to Fig. 1, part C: 

 
𝑥1̇ = −𝑥1 − 1.5 tanh(𝑥1) + tanh(𝑥2) − 1.5 tanh(𝑥3) − 1.5 tanh(𝑥4)  

+𝜑(𝛼 + 3𝛽𝜑2)𝑥1 

 𝑥2̇ = −𝑥2 − 2.2 tanh(𝑥1) − .5 tanh(𝑥2) + tanh(𝑥2) + 2.5 tanh(𝑥3) −  1.5 tanh (𝑥4) 

 𝑥3̇ = −𝑥3 − .5 tanh(𝑥1) + 1.4 tanh(𝑥2) + tanh(𝑥3) +  1.5 tanh(𝑥4)  

 𝑥4̇ = −𝑥2 − 2.2 tanh(𝑥1) − .5 tanh(𝑥2) + tanh(𝑥2) + 2.5 tanh(𝑥3) −  1.5 tanh (𝑥4) 

 𝜑1 = 𝜇1 𝑥1  

 𝜑2 = 𝜇2 𝑥2                                                                                                                                                            (10)  

 
𝑥𝑖(i=1,2) and 𝜑1, 𝜑2 is the state variable of the system. 

 

2.3 Stability Analysis with Mathematical and Visual Model 

 
To analyze the stability of all three cases, the first case of two neurons with overlapping synapses 
without EMR, the second case of two neurons with overlapping synapses and single EMR, the third 
case of two neurons with overlapping synapses and with two EMRs have been analyzed by 
mathematical and visual analysis methods for In the first case, we set the mathematical equation 8 
equal to 0. 

 
 0 = −𝑥1 − 1.5 tanh(𝑥1) + tanh(𝑥2) − 1.5 tanh(𝑥3) − 1.5 tanh(𝑥4)  

 0 = −𝑥2 − 2.2 tanh(𝑥1) − .5 tanh(𝑥2) + tanh(𝑥2) + 2.5 tanh(𝑥3) −  1.5 tanh (𝑥4) 

 0 = −𝑥3 − .5 tanh(𝑥1) 

 0 = −𝑥4 − tanh(𝑥2)                                                                                                                                            (11) 

 
From equation 11, the implied function of equation 12 can be obtained by placing  𝑥3 = .5 tanh(𝑥1) 

and  𝑥4 = tanh(𝑥2) instead of 𝑥1 and x instead of 𝑥2 , y in equation 11, and based on this equation, the 
Fig. 3 equilibrium point for the first case is determined.  

 
𝐻1(𝑥,𝑦) = −𝑥 − 1.5 tanh(𝑥) + tanh(𝑦) − 1.5 tanh (.5 tanh(𝑥) − 1.5 tanh(𝑦)) 

𝐻2(𝑥,𝑦) = −𝑦 − 2.2 tanh(𝑥) − .5 tanh(𝑦) + tanh(𝑦) + 2.5 tanh(. 5 tanh(𝑦)) − 1.5 tanh(𝑡𝑎𝑛ℎ(𝑦))             (12) 
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Fig. 3. Fixed point for the two-neuron case with synapse interference without ENR 
 

For the second case, we set the mathematical equation 9 equal to 0.  
 

0 = −𝑥1 − 1.5 tanh(𝑥1) + tanh(𝑥2) − 1.5 tanh(𝑥3) − 1.5 tanh(𝑥4) +𝜑(𝛼 + 3𝛽𝜑2)𝑥1 
0 = −𝑥2 − 2.2 tanh(𝑥1) − .5 tanh(𝑥2) + tanh(𝑥2) + 2.5 tanh(𝑥3) −  1.5 tanh (𝑥4) 
0 = −𝑥3 − .5 tanh(𝑥1) + 1.4 tanh(𝑥2) + tanh(𝑥3) +  1.5 tanh(𝑥4)  
0 = − 𝑥4 + 5 tanh(𝑥1) − 1.5 tanh(𝑥2) − 2.5 tanh(𝑥3) +  3 tanh(𝑥4)  
0 = 𝜇 𝑥1                                                                                                                                                                   (13) 

 

According to the section 0 = 𝜇 𝑥1 and because 𝜇 the intensity coefficient is related to EMR, so 𝑥1 = 0 
and its value is non-zero, so equation 12 becomes equation 13. 
 

0 = −𝑥3 − 1.4 tanh(1.75 tanh (𝑥3) − 2.25 tanh(𝑥4)) + tanh(𝑥3) +  1.5 tanh(𝑥4)  
0 = − 𝑥4 + 1.5 tanh(1.75 tanh (𝑥3) − 2.25 tanh(𝑥4)) − 2.5 tanh(𝑥3) +  3 tanh(𝑥4)                      (14) 

 

From equation 13, by setting 𝑥3 equal to x and 𝑥4 equal to y, the implied function of equation 15 can 
be obtained, and based on this equation, Fig. 4 and the equilibrium point for the second case are 
determined.  

 
 

Fig. 4. Fixed point for two neurons with synapse interference and single EMR 
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𝐻1(𝑥,𝑦) = −𝑥 + 1.4 tanh(1.75 tanh(𝑥)) − 2.25 tanh(𝑦) + tanh(𝑥) + 1.5 tanh(𝑦)) 

𝐻2(𝑥,𝑦) = −𝑦 − 1.5 tanh(1.75tanh (𝑥) − 2.25 tanh(𝑦)) − 2.5 tanh(𝑥) +  3 tanh(𝑡𝑎𝑛ℎ(𝑦))          (15) 
 

For the third case, we set the mathematical equation 10 equal to 0. 
 

0 = −𝑥1 − 1.5 tanh(𝑥1) + tanh(𝑥2) − 1.5 tanh(𝑥3) − 1.5 tanh(𝑥4) +𝜑(𝛼 + 3𝛽𝜑2)𝑥1 
0 = −𝑥2 − 2.2 tanh(𝑥1) − .5 tanh(𝑥2) + tanh(𝑥2) + 2.5 tanh(𝑥3) −  1.5 tanh (𝑥4) 
0 = −𝑥3 − .5 tanh(𝑥1) + 1.4 tanh(𝑥2) + tanh(𝑥3) +  1.5 tanh(𝑥4)  
0 = −𝑥2 − 2.2 tanh(𝑥1) − .5 tanh(𝑥2) + tanh(𝑥2) + 2.5 tanh(𝑥3) −  1.5 tanh (𝑥4) 

0 = 𝜇1 𝑥1  
0 = 𝜇2 𝑥2                                                                                                                                                                (16)  

 

According to the section 0 = 𝜇1 𝑥1 and 0 = 𝜇2 𝑥2 , because 𝜇1 and 𝜇2are intensity coefficients related 

to EMR, it is non-zero. Therefore, 𝑥1 = 0 and 𝑥2 = 0 , so equation 16 becomes equation 17. 
 

0 = −1.5 tanh(𝑥3) − 1.5tanh (𝑥4) 
0 = −2.5 tanh(𝑥3) − 1.5tanh (𝑥4) 
0 = −𝑥3 + tanh(𝑥3) + 1.5tanh (𝑥4) 

0 = −𝑥4 − 2.5 tanh(𝑥3) − 3 tanh(𝑥4)                                                                                                            (17)  
 

From equation 17, by setting𝑥3 equal to x and 𝑥4equal to y, the implicit function of equation 18 can be 
obtained, and based on this equation, Fig. 5 and the equilibrium point of the third case are 
determined. 
 

𝐻1(𝑥,𝑦) = −1.5 tanh(𝑥) − 1.5tanh (𝑦) 

𝐻2(𝑥,𝑦) = −2.5 tanh(𝑥) − 1.5tanh (𝑦) 

𝐻3(𝑥,𝑦) = −𝑥 + tanh(𝑥) + 1.5tanh (𝑦) 

𝐻4(𝑥,𝑦) = −𝑦 − 2.5 tanh(𝑥) − 3 tanh(𝑦)                                                                                                       (18)  
 

 
 

Fig. 5. Fixed point for two neurons with synapse interference and two EMRs 
 

In Fig. 4, you can see that the system is at the 
equilibrium point when all four points 𝑥1, 𝑥2, , 𝑥3, 𝑥4 
are equal to zero and constant, and according to 
equation 13, the value of 𝜇1  can have an 
arbitrary value, and there can be an infinite 
number of points, and the system is still in the 
state Equilibrium remains, i.e. (0,0,0,0,  𝑝), so 𝑝 

can change in the scope of its definition, which 
creates a one-dimensional path in a 5-
dimensional space. In the nonlinear system, the 
equilibrium point is the point that does not 
change state in the system. In Fig. 5, the values 
of 𝜇1, 𝜇2 are arbitrary values, so they form a 2-
dimensional space and a plane, and any point on 
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this surface can be an equilibrium state in the 6-
dimensional space, because 𝜇1, 𝜇2  can take 
different values, so there are many equilibrium 
states. 
 

3. ANALYZING THE DYNAMIC BEHAVIOR 
OF HNN 

 

3.1 Analyzing the Dynamic Behavior of 
HNN by Lyapunov Power 

 

Lyapunov power is used to describe the chaotic 
behavior of nonlinear dynamic systems.In this 
section, the analysis of the dynamic behaviors of 

the HNN model without EMR in Fig. 6 and with a 
single EMR in Fig. 7 and with two EMRs in Fig. 8 
with different values has been investigated. 
 

The parameter a of the memristor model is 
considered as a variable parameter and has 
been checked with different values. The dynamic 
behavior of HNN with Lyapunov power shows 
that according to Fig. 6, the Lyapunov power of 
HNN in the state without EMR is -2.3 and Fig. 7 
the Lyapunov power of HNN in the single EMR 
state is -2.8 and Fig. 8 shows that the Lyapunov 
power of HNN In the case of two EMRs at -3.1, 
the system has an obvious chaos phenomenon.  

 

 
 

Fig. 6. Lyapunov power of HNN without EMR 
 

 
 

Fig. 7. Lyapunov power of HNN in single EMR mode 
 

 
 

Fig. 8. Lyapunov power of HNN in the case of two EMRs 
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3.2 Analyzing the Dynamic Behavior of 
HNN by Phase Portrai 

 

Fuzzy portrait is to record the path of the system 
with a shape that reveals the performance of the 
system. Then the fuzzy portrait is a graphical 
representation of the state trajectories of the 
dynamical system in the state space. Each point 
in this space represents the instantaneous state 
of the system, and the lines or curves represent 
the time evolution of these points. These portraits 
help us understand the behavior of the dynamical 
system, including fixed points, limit cycles, and 
attractors. And attraction is called a set of points 
in the state space towards which the dynamic 
system tends. In other words, if a system starts 
near this set of points, it will gravitate towards it. 
Attractors can take many forms such as Fixed 
Points, Limit Cycles, or more complex structures 
such as Strange Attractors. Transient chaos 
refers to a state in a dynamical system where the 
system is constrained for a limited period of time. 
It exhibits chaotic behavior, but eventually settles 
into an orderly behavior (usually gravity). This 
phenomenon is observed in many systems, 
where the system has an unpredictable and 
chaotic behavior at first, but over time it reaches 
a more stable pattern. Chaos in dynamic 
systems refers to a state in which the behavior of 
the system is very sensitive to It is the basic 
condition. Small changes in initial conditions can 
lead to large differences in system behavior. 
Chaotic systems have unpredictable and 
complex behavior, even if the governing 
equations are fully determinable. Strange gravity 
is a special type of gravity found in chaotic 

systems. Unlike simple attractions such as fixed 
points or limit cycles, these attractions have a 
complex and fractal structure. This means that 
they are infinitely detailed in dimensions, and the 
paths of the system around them can be very 
complex and unpredictable. In dynamic systems 
with fuzzy portraits, all these things can be 
understood with images, and in general, they 
help to understand the complex and 
unpredictable behavior of HNN                           
dynamic systems. Chaos theory shows that even 
simple systems can have very complex 
behaviors that are sensitive to initial conditions. 
Dynamic behavior of the system for three states 
with initial values of 𝛼 = 1, 𝛽 = −1, 𝜌 = 2, 𝜇1 =
𝜇2 = 1  has been checked. Fig. 9 for the HNN 
mode with synapse interference without EMR, 
where the phase portrait represents the periodic 
mode. 

 

Fig. 10 for the state of the neural network with 
synapse interference with single EMR, where the 
fuzzy portrait shows the state of transient chaos. 

 

Fig. 11 for the state of the neural network                  
with synapse interference with two EMRs,              
where the fuzzy portrait represents the state of 
chaos. 

 

If we change the value of 𝛼 = −1 in Fig. 11 to the 
value of 𝛼 = −1.4, the chaotic state of the tidal 
system will become a transient chaotic state as 
shown in Fig. 12. Therefore, changing the initial 
value of the values directly affects the system 
state. 

 
 

Fig. 9. HNN with synapse interference without EMR 
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Fig. 10. Neural network with synapse interference with single EMR 
 

 
 

Fig. 11. Neural network with synapse interference with two EMRs 
 

 
 

Fig. 12. Neural network with synapse interference and with two EMRs and 𝜶 = −𝟏. 𝟒 
 

4. CIRCUIT SIMULATION WITH PSPICE 
 

To design the HNN circuit based on 
mathematical equations and based                              
on two neurons, and without EMR in Fig.                      
13 and the EMR circuit itself is also seen                    

in Fig. 15. The HNN circuit based on                      
two neurons and overlapping synapses with 
single EMR is shown in Fig.16 and the                     
HNN circuit based on two neurons and 
overlapping synapses with two EMRs is shown in 
Fig. 18. 
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4.1 Simulation of Neural Network Circuit 
with Synapse Interference without 
EMR with Pspice 

 

It includes tanh circuit and synapse weight and 
the overall circuit is specified in diagram 13 

All values and components of the                            
circuit are specified in the figure. After designing 
the circuit and implementing the output of the 
circuit in Fig. 13, the output of this dynamic 
system is periodic. which you can see in diagram 
14. 

 

 
 

Fig. 13. Memristive HNN circuit with synaptic interference and no EMR 
 

 
 

Fig. 14. HNN circuit with synapse interference without EMR 
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4.2 Simulating Neural Network Circuit with Synapse Interference with Single EMR 

with Pspice 
 

The EMR circuit is shown in Fig. 15, and the HNN circuit with overlapping synapses and an EMR is 
designed in Fig. 16. 
 

 
 

Fig 15. EMR circuit 
 

 
 

Fig. 16. HNN circuit with cross synapses and an EMR 
 

After the execution of circuit 16, the output of circuit 17 is obtained, which produces a transient chaotic 
state. 
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4.3 Simulation of Neural Network Circuit 
with Synapse Interference with two 
EMRs with Pspice 

 
It is the same as circuit 16, only the                         
circuit has two EMRs, which is designed in Fig. 
18. 

The output of the circuit in Fig. 18 is checked in 
two states with frequency 100 in Fig. 19 and 130 
in Fig. 20. In Fig. 19, the system has a chaotic 
state, but with the change of frequency in Fig. 20, 
the system turns into a transient state of chaos, 
which shows that the system has a slight 
change. It has different modes and is sensitive to 
initial conditions 

 

 
 

Fig 17. HNN circuit with synapse interference with single EMR 
 

 
 

Fig. 18. HNN circuit with crossed synapses and two EMRs 
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Fig 19. The output of the circuit in Fig. 18 with a frequency of 100 
 

 
 

Fig. 20. The output of the circuit in Fig. 18 with a frequency of 130 
 

5. CONCLUSION 
 

In this research, the chaotic dynamics of HNN of 
two neurons with synapse interference were 
investigated for three body states of EMR, single 
EMR, and two EMRs. The second cases of 
single EMR affecting one neuron and the third 
case of double EMR affecting two neurons are 
presented respectively. Through the study, it was 
first found that chaotic phenomena can be 
observed by Lyapunov power. By examining the 
phase portraits for all three states of chaos and 
multi-period phenomena appeared, and the 
properties of dual EMR suppression in the chaos 
of the system are also changed by changing the 
initial values. The results show that the external 
stimulus represented by EMR can affect the 

inherently chaotic system. It can both have more 
complex dynamic behavior and suppress 
complex chaotic behavior by changing 
parameters. Finally, the feasibility of this theory is 
confirmed by circuit and pspice experiments, and 
the results of this study are used in the control of 
chaotic phenomena. The key results are: 

 
1. Observation of Chaotic Behavior: The 

study successfully identified chaotic 
dynamics in the two-neuron memristive 
Hopfield Neural Network (HNN) when 
subjected to different scenarios of 
electromagnetic radiation (EMR), 
demonstrating that both single and dual 
EMR inputs can induce chaos in the 
system. 



 
 
 
 

Aghaei; Asian J. Res. Com. Sci., vol. 17, no. 12, pp. 89-107, 2024; Article no.AJRCOS.124677 
 
 

 
104 

 

2. Lyapunov Analysis: The chaotic 
phenomena were quantified using 
Lyapunov exponents, confirming that the 
external influence of EMR leads to 
significant instability and complexity in the 
neural network's dynamics, indicating that 
the system exhibits sensitive dependence 
on initial conditions. 

3. Phase Portraits and Multi-Periodic 
Behaviors: Phase portraits for each EMR 
scenario revealed the emergence of multi-
periodic phenomena, showcasing rich and 
complex dynamic behaviors that vary with 
the presence and arrangement of EMR. 

4. Impact of Dual EMR: The analysis 
highlighted that dual EMR inputs not only 
induce chaos but also modify the system's 
chaotic properties, with changes in initial 
conditions affecting the degree of chaos 
and system behavior. 

5. Dynamic Control through EMR: The 
study demonstrated that EMR can be 
strategically used as an external stimulus 
to control the chaotic dynamics within the 
two-neuron network, allowing for both the 
enhancement of complex behaviors and 
suppression of chaotic patterns by 
adjusting input parameters. 

6. Verification with PSpice Simulations: 
The theoretical findings were validated 
through circuit simulations using PSpice, 
confirming the practical feasibility of 
controlling chaotic behavior in neural 
networks with EMR manipulation. 

7. Potential Applications: The results 
underscore potential applications in 
neuromorphic computing, control systems, 
and communication technologies, where 
modulation of chaotic dynamics could lead 
to improved stability and reliability in 
complex systems. 
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